Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 135(20): 2377-2391, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34608942

RESUMO

One of the health benefits of endurance exercise training (ET) is the stimulation of hematopoiesis. However, the mechanisms underlying ET-induced hematopoietic adaptations are understudied. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits proliferation of early hematopoietic progenitor cells. The angiotensin I-converting enzyme (ACE) NH2-terminal promotes hematopoiesis by inhibiting the anti-hematopoietic effect of Ac-SDKP. Here we demonstrate for the first time the role of ACE NH2-terminal in ET-induced hematopoietic adaptations. Wistar rats were subjected to 10 weeks of moderate-(T1) and high-(T2) volume swimming-training. Although both protocols induced classical ET-associated adaptations, only T2 increased plasma ACE NH2-domain activity (by 40%, P=0.0003) and reduced Ac-SDKP levels (by 50%, P<0.0001). T2 increased the number of hematopoietic stem cells (HSCs; ∼200%, P=0.0008), early erythroid progenitor colonies (∼300%, P<0.0001) and reticulocytes (∼500%, P=0.0007), and reduced erythrocyte lifespan (∼50%, P=0.022). Following, Wistar rats were subjected to T2 or T2 combined with ACE NH2-terminal inhibition (captopril (Cap) treatment: 10 mg.kg-1.day-1). T2 combined with ACE NH2-terminal inhibition prevented Ac-SDKP decrease and attenuated ET-induced hematopoietic adaptations. Altogether, our findings show that ET-induced hematopoiesis was at least partially associated with increased ACE NH2-terminal activity and reduction in the hematopoietic inhibitor Ac-SDKP.


Assuntos
Treino Aeróbico , Hematopoese , Células-Tronco Hematopoéticas/enzimologia , Peptidil Dipeptidase A/metabolismo , Resistência Física , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Feminino , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Oligopeptídeos/metabolismo , Condicionamento Físico Animal , Domínios Proteicos , Ratos Wistar , Fatores de Tempo
2.
In Vitro Cell Dev Biol Anim ; 56(8): 604-613, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32914385

RESUMO

Knockout of multifunction gene cysteine- and glycine-rich protein 3 (CSRP3) in cardiomyocytes (CMs) of mice leads to heart dilation, severely affecting its functions. In humans, CSRP3 mutations are associated with hypertrophic (HCM) and dilated cardiomyopathy (DCM). The absence of the CSRP3 expression produces unknown effects on in vitro neonatal CMs' metabolism. The metabolome changes in culture media conditioned by CSRP3 knockout (KO-CSRP3), and wild type (WT) neonatal cardiomyocytes were investigated under untreated or after metabolic challenging conditions produced by isoproterenol (ISO) stimulation, by in vitro high-resolution proton magnetic resonance spectroscopy (1H-MRS)-based metabolomics. Metabolic differences between neonatal KO-CSRP3 and WT rats' CMs were identified. After 72 h of culture, ISO administration was associated with increased CMs' energy requirements and increased levels of threonine, alanine, and 3-hydroxybutyrate in both neonatal KO-CSRP3 and WT CMs conditioned media. When compared with KO-CSRP3, culture media derived from WT cells presented higher lactate concentrations either under basal or ISO-stimulated conditions. The higher activity of ketogenic biochemical pathways met the elevated energy requirements of the contractile cells. Both cells are considered phenotypically indistinguishable in the neonatal period of animal lives, but the observed metabolic stress responses of KO-CSRP3 and WT CMs to ISO were different. KO-CSRP3 CMs produced less lactate than WT CMs in both basal and stimulated conditions. Mainly, ISO-stimulated conditions produced evidence for lactate overload within KO-CSRP3 CMs, while WT CMs succeeded to manage the metabolic stress. Thus, 1H-MRS-based metabolomics was suitable to identify early inefficient energetic metabolism in neonatal KO-CSRP3 CMs. These results may reflect an apparent lower lactate transport and consumption, in association with protein catabolism.


Assuntos
Meios de Cultura/química , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Animais , Animais Recém-Nascidos , Forma Celular , Análise Discriminante , Isoproterenol/farmacologia , Proteínas com Domínio LIM/deficiência , Análise dos Mínimos Quadrados , Proteínas Musculares/deficiência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Estatística como Assunto
3.
Sci Rep ; 10(1): 12350, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704142

RESUMO

The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.


Assuntos
Células Endoteliais/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Animais Recém-Nascidos , Meios de Cultivo Condicionados , Células Endoteliais/citologia , Macrófagos/citologia , Miocárdio/citologia , Miócitos Cardíacos , Ratos
5.
Stem Cell Rev Rep ; 15(6): 851-863, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31529274

RESUMO

Adipose stromal cells are promising tools for clinical applications in regeneration therapies, due to their ease of isolation from tissue and its high yield; however, their ability to transdifferentiate into neural phenotypes is still a matter of controversy. Here, we show that combined chemical and neurotrophin stimulation resulted in neuron-like morphology and regulated expression and activity of several genes involved in neurogenesis and neurotransmission as well as ion currents mediated by NMDA and GABA receptors. Among them, expression patterns of genes coding for kinin-B1 and B2, α7 nicotinic, M1, M3 and M4 muscarinic acetylcholine, glutamatergic (AMPA2 and mGlu2), purinergic P2Y1 and P2Y4 and GABAergic (GABA-A, ß3-subunit) receptors and neuronal nitric oxide synthase were up-regulated compared to levels of undifferentiated cells. Simultaneously, expression levels of P2X1, P2X4, P2X7 and P2Y6 purinergic and M5 muscarinic acetylcholine receptors were down-regulated. Agonist-induced activity levels of the studied receptor classes also augmented during neuronal transdifferentiation. Transdifferentiated cells expressed high levels of neuronal ß3-tubulin, NF-H, NeuN and MAP-2 proteins as well as increased ASCL1, MYT1 and POU3F2 gene expression known to drive neuronal fate determination. The presented work contributes to a better understanding of transdifferentiation induced by neurotrophins for a prospective broad spectrum of medical applications.


Assuntos
Adipócitos/citologia , Transdiferenciação Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neurônios/citologia , Receptores de Neurotransmissores/metabolismo , Células Estromais/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Neurotransmissores/genética , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 317(1): H201-H212, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125255

RESUMO

Administration of active growth differentiation factor 11 (GDF11) to aged mice can reduce cardiac hypertrophy, and low serum levels of GDF11 measured together with the related protein, myostatin (also known as GDF8), predict future morbidity and mortality in coronary heart patients. Using mice with a loxP-flanked ("floxed") allele of Gdf11 and Myh6-driven expression of Cre recombinase to delete Gdf11 in cardiomyocytes, we tested the hypothesis that cardiac-specific Gdf11 deficiency might lead to cardiac hypertrophy in young adulthood. We observed that targeted deletion of Gdf11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation when compared with control mice carrying only the Myh6-cre or Gdf11-floxed alleles, suggesting a possible etiology for dilated cardiomyopathy. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected model. First, whole heart Gdf11 expression did not decrease in Myh6-cre; Gdf11-floxed mice, possibly because of upregulation of Gdf11 in noncardiomyocytes in the heart. Second, we observed Cre-associated toxicity, with lower body weights and increased global fibrosis, in Cre-only control male mice compared with flox-only controls, making it challenging to infer which changes in Myh6-cre;Gdf11-floxed mice were the result of Cre toxicity versus deletion of Gdf11. Third, we observed differential expression of cre mRNA in Cre-only controls compared with the cardiomyocyte-specific knockout mice, also making comparison between these two groups difficult. Thus, targeted Gdf11 deletion in cardiomyocytes may lead to left ventricular dilation without hypertrophy, but alternative animal models are necessary to understand the mechanism for these findings. NEW & NOTEWORTHY We observed that targeted deletion of growth differentiation factor 11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation compared with control mice carrying only the Myh6-cre or growth differentiation factor 11-floxed alleles. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected mouse model.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Cardiomiopatia Dilatada/genética , Deleção de Genes , Fatores de Diferenciação de Crescimento/genética , Integrases/genética , Miócitos Cardíacos/metabolismo , Fatores Etários , Animais , Proteínas Morfogenéticas Ósseas/deficiência , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Fatores de Diferenciação de Crescimento/deficiência , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Fenótipo , Função Ventricular Esquerda , Remodelação Ventricular
7.
J Cardiovasc Dev Dis ; 6(1)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717394

RESUMO

The global expression profile of the arterialized rat jugular vein was established to identify candidate genes and cellular pathways underlying the remodeling process. The arterialized jugular vein was analyzed on days 3 and 28 post-surgery and compared with the normal jugular vein and carotid artery. A gene array platform detected 9846 genes in all samples. A heatmap analysis uncovered patterns of gene expression showing that the arterialized vein underwent a partial transition from vein to artery from day 3 to 28 post-surgery. The same pattern was verified for 1845 key differentially expressed genes by performing a pairwise comparison of the jugular vein with the other groups. Interestingly, hierarchical clustering of 60 genes with altered expression on day 3 and day 28 displayed an expression pattern similar to that of the carotid artery. Enrichment analysis results and the network relationship among genes modulated during vein arterialization showed that collagen might play a role in the early remodeling process. Indeed, the total collagen content was increased, with the augmented expression of collagen I, collagen IV, and collagen V in arterialized veins. Additionally, there was an increase in the expression of versican and Thy-1 and a decrease in the expression of biglycan and ß1-integrin. Overall, we provide evidence that vein arterialization remodeling is accompanied by consistent patterns of gene expression and that collagen may be an essential element underlying extracellular matrix changes that support the increased vascular wall stress of the new hemodynamic environment.

8.
Stem Cell Rev Rep ; 15(1): 48-58, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30338498

RESUMO

The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.


Assuntos
Diferenciação Celular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Receptor B2 da Bradicinina/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Bradicinina/metabolismo , Cardiotoxinas/administração & dosagem , Linhagem Celular , Proliferação de Células , Citoesqueleto/metabolismo , Deleção de Genes , Cininogênios/genética , Cininogênios/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor B2 da Bradicinina/genética
11.
J Cell Physiol ; 233(7): 5420-5430, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29219187

RESUMO

Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/citologia , Troponina I/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Citoplasma/genética , Isoproterenol/farmacologia , Miócitos Cardíacos/fisiologia , Ratos , Espécies Reativas de Oxigênio
12.
Sci Rep ; 7(1): 15434, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133820

RESUMO

Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.


Assuntos
Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Glicólise/fisiologia , Mitocôndrias/química , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Oxirredução , Estresse Oxidativo/fisiologia , Oxigênio/análise , Oxigênio/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar
13.
Nat Genet ; 49(9): 1292-1293, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854178

RESUMO

Genetic and functional analyses of 120 mouse strains have identified a heart regeneration candidate gene that modulates the contractile sarcomeric apparatus. This gene, Tnni3k, controls the frequency of the mononuclear, diploid cardiomyocyte population, which affects cardiomyocyte proliferative potential after injury.


Assuntos
Coração/fisiologia , Mamíferos/fisiologia , Regeneração/genética , Animais , Diferenciação Celular/genética , Quimera , Células Gigantes/metabolismo , Humanos , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Miócitos Cardíacos/fisiologia
14.
Ciênc. rural ; 46(10): 1838-1845, Oct. 2016. graf
Artigo em Inglês | LILACS | ID: lil-792548

RESUMO

ABSTRACT: The objective of this research was to evaluate the clinical and microscopic effects in rabbits of lamellar keratoplasty using allogeneic omentum associated with canine amniotic membrane (AM). Rabbits were divided into two groups: one received the allogeneic free omental graft covered with the AM (OM-graft group), while the other received the AM graft containing omental mesenchymal cells (OM-cell group). Clinical signs were evaluated on different postoperative days. After the clinical assessments, the rabbits were euthanized and their corneas were obtained for histopathology and immunohistochemistry (Ki-67, marker for proliferation). Both groups showed chemosis, blepharospasm, eye discharge, hyperemia, and corneal opacity/edema. Neovascularization was observed in the OM-cell group. Histopathological evaluation revealed epithelial islands within the stroma of OM-cell samples. Thirty days after surgery, complete corneal re-epithelialization had occurred in both groups. The OM-cell group showed more Ki-67 positive cells. The free omentum and its cells, combined with the AM, contributed to corneal repair, a process that was completed 30 days after lamellar keratoplasty.


RESUMO: Objetivou-se, com a pesquisa, avaliar os efeitos clínicos e microscópicos da associação do omento de coelho com a membrana amniótica (AM) canina, na ceratoplastia lamelar em coelhos. Dois grupos foram constituídos: um recebeu enxerto de omento alógeno livre, recoberto por AM (grupo OM- graft); o outro recebeu enxerto de AM contendo células mesenquimais derivadas do omento (grupo OM-cell). Manifestações clínicas foram avaliadas em diferentes tempos de pós-operatórios. Após as avaliações clínicas, coelhos foram submetidos à eutanásia e córneas foram colhidas para histopatologia e imunohistoquímica (Ki-67, marcador de proliferação). Relativamente às manifestações clínicas, ambos os grupos apresentaram sinais de quemose, blefarospasmo, secreção ocular, hiperemia e opacidade/edema. Neovascularização foi observada no grupo OM-cell. Avaliações à histopatologia mostraram que uma amostra de OM-cell apresentou ilhas de epitélio dentro do estroma. Aos 30 dias de pós-operatório, observou-se reepitelização corneal completa, em OM-graft e OM-cell. O grupo OM-cell apresentou mais células positivas para Ki-67. O omento livre e suas células, associados à AM, contribuíram para a reparação corneal, que se completou após 30 dias de ceratoplastia lamelar.

15.
Methods Mol Biol ; 1380: 127-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552821

RESUMO

Aptamers compete with antibodies in many applications, in which high-affinity and specificity ligands are needed. In this regard, fluorescence-tagged aptamers have gained applications in flow and imaging cytometry for detecting cells expressing distinct antigens. Here we present prospective methods, as a starting point, for using these high-affinity ligands for cytometry applications.


Assuntos
Aptâmeros de Nucleotídeos , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Cinética , Ligação Proteica , Coloração e Rotulagem
16.
Lasers Med Sci ; 30(1): 217-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25192841

RESUMO

Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.


Assuntos
Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Adesão Celular/efeitos da radiação , Células Cultivadas , Meios de Cultura , Expressão Gênica/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Ratos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Biomed Eng Online ; 13: 54, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24885410

RESUMO

BACKGROUND: We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. METHODS: Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. RESULTS: Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. CONCLUSIONS: Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia.


Assuntos
Tecido Adiposo/citologia , Sistema Cardiovascular/citologia , Diferenciação Celular , Fenômenos Mecânicos , Fenótipo , Células-Tronco/citologia , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Infarto do Miocárdio/cirurgia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Fatores de Tempo , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
PLoS One ; 8(8): e70605, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950970

RESUMO

The a priori identification of induced pluripotent stem cells remains a challenge. Being able to quickly identify the most embryonic stem cell-similar induced pluripotent stem cells when validating results could help to reduce costs and save time. In this context, tools based on non-classic logic can be useful in creating aid-systems based on visual criteria. True colonies when viewed at 100x magnification have been found to have the following 3 characteristics: a high degree of border delineation, a more uniform texture, and the absence of a cracked texture. These visual criteria were used for fuzzy logic modeling. We investigated the possibility of predicting the presence of alkaline phosphatase activity, typical of true induced pluripotent stem cell colonies, after 25 individuals, with varying degrees of experience in working with murine iPS cells, categorized the images of 136 colonies based on visual criteria. Intriguingly, the performance evaluation by area under the ROC curve (16 individuals with satisfactory performance), Spearman correlation (all statistically significant), and Cohen's Kappa agreement analysis (all statistically significant) demonstrates that the discriminatory capacity of different evaluators are similar, even those who have never cultivated cells. Thus, we report on a new system to facilitate visual identification of murine- induced pluripotent stem cell colonies that can be useful for staff training and opens the possibility of exploring visual characteristics of induced pluripotent stem cell colonies with their functional peculiarities. The fuzzy model has been integrated as a web-based tool named "2see-iPS" which is freely accessed at http://genetica.incor.usp.br/2seeips/.


Assuntos
Lógica Fuzzy , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
19.
PLoS One ; 8(7): e67939, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874472

RESUMO

We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs) can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs) with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+); CD90(+); CD44(+); CD140b(+); CD105(+); and negative markers CD31(-); CD34(-); CD45(-) and SLA-DR(-); n = 3). Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells) and cumulative population doubling increased constantly until Passage 10 (P10) in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-ß-Gal staining). Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.


Assuntos
Tecido Adiposo/citologia , Criopreservação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Animais , Antígenos de Superfície/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Imunofenotipagem , Cariótipo , Masculino , Suínos , Fatores de Tempo , Transcriptoma
20.
Methods Mol Biol ; 965: 157-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23296656

RESUMO

Identifying molecules that serve as markers for cell aging is a goal that has been pursued by several groups. Senescence-associated ß galactosidase (SA-ßgal) staining is broadly used and very easily detected. ß-gal is a lysosomal enzyme strongly correlated to the progression of cell senescence. Here, we describe a simple, fast, and quantitative protocol to quantify SA-ßgal activity in cell lysate extracts by a chemiluminescent method using galacton as substrate.


Assuntos
Senescência Celular , Medições Luminescentes/métodos , beta-Galactosidase/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...